Monday 6 February 2017

Filtre Moyen Mobile Pondéré Exponentiellement

Exploration de la moyenne mobile exponentiellement pondérée La volatilité est la mesure la plus courante de risque, mais il est disponible en plusieurs saveurs. Dans un article précédent, nous avons montré comment calculer la volatilité historique simple. Nous avons utilisé les données réelles sur les actions de Googles afin de calculer la volatilité quotidienne basée sur 30 jours de données sur les actions. Dans cet article, nous améliorerons la volatilité simple et discuterons de la moyenne mobile exponentiellement pondérée (EWMA). Historique vs. Volatilité implicite Tout d'abord, mettons cette métrique dans un peu de perspective. Il existe deux grandes approches: la volatilité historique et implicite (ou implicite). L'approche historique suppose que le passé est prologue, nous mesurons l'histoire dans l'espoir qu'elle est prédictive. La volatilité implicite, d'autre part, ignore l'histoire qu'elle résout pour la volatilité impliquée par les prix du marché. Elle espère que le marché le sait mieux et que le prix du marché contient, même implicitement, une estimation de la volatilité. Si l'on se concentre uniquement sur les trois approches historiques (à gauche ci-dessus), elles ont deux étapes en commun: Calculer la série de retours périodiques Appliquer un schéma de pondération D'abord, nous Calculer le rendement périodique. C'est généralement une série de rendements quotidiens où chaque retour est exprimé en termes continuellement composés. Pour chaque jour, nous prenons le log naturel du ratio des prix des actions (c'est-à-dire le prix aujourd'hui divisé par le prix d'hier, et ainsi de suite). Cela produit une série de rendements quotidiens, de u i à u i-m. Selon le nombre de jours (m jours) que nous mesurons. Cela nous amène à la deuxième étape: c'est là que les trois approches diffèrent. Dans l'article précédent (Utilisation de la volatilité pour mesurer le risque futur), nous avons montré que, sous quelques simplifications acceptables, la variance simple est la moyenne des rendements au carré: Notez que ceci récapitule chacun des rendements périodiques, puis divise ce total par Nombre de jours ou observations (m). Donc, c'est vraiment juste une moyenne des rendements périodiques au carré. Autrement dit, chaque retour au carré reçoit un poids égal. Ainsi, si l'alpha (a) est un facteur de pondération (spécifiquement, un 1m), alors une variance simple ressemble à ceci: L'EWMA améliore la variance simple La faiblesse de cette approche est que tous les retours gagnent le même poids. Le retour hier (très récent) n'a plus d'influence sur la variance que le rendement des derniers mois. Ce problème est résolu en utilisant la moyenne mobile exponentiellement pondérée (EWMA), dans laquelle les rendements plus récents ont un poids plus important sur la variance. La moyenne mobile exponentiellement pondérée (EWMA) introduit lambda. Qui est appelé le paramètre de lissage. Lambda doit être inférieur à un. Sous cette condition, au lieu de pondérations égales, chaque rendement au carré est pondéré par un multiplicateur comme suit: Par exemple, RiskMetrics TM, une société de gestion des risques financiers, a tendance à utiliser un lambda de 0,94 ou 94. Dans ce cas, le premier La plus récente) le rendement périodique au carré est pondéré par (1-0.94) (. 94) 0 6. Le prochain rendement au carré est simplement un multiple lambda du poids antérieur dans ce cas 6 multiplié par 94 5.64. Et le troisième jour antérieur, le poids est égal à (1-0,94) (0,94) 2 5,30. C'est le sens de l'exponentielle dans EWMA: chaque poids est un multiplicateur constant (c'est-à-dire lambda, qui doit être inférieur à un) du poids des jours précédents. Cela garantit une variance pondérée ou biaisée vers des données plus récentes. (Pour en savoir plus, consultez la feuille de calcul Excel pour la volatilité de Googles.) La différence entre la volatilité et l'EWMA pour Google est illustrée ci-dessous. La volatilité simple pèse efficacement chaque rendement périodique de 0.196 comme indiqué dans la colonne O (nous avions deux années de données quotidiennes sur les cours des actions, soit 509 déclarations journalières et 1509 0.196). Mais notez que la colonne P attribue un poids de 6, puis 5.64, puis 5.3 et ainsi de suite. C'est la seule différence entre la variance simple et EWMA. Rappelez-vous: Après avoir additionné toute la série (dans la colonne Q), nous avons la variance, qui est le carré de l'écart-type. Si nous voulons la volatilité, nous devons nous rappeler de prendre la racine carrée de cette variance. Quelle est la différence entre la volatilité quotidienne entre la variance et l'EWMA dans l'affaire Googles? Sa significative: La variance simple nous a donné une volatilité quotidienne de 2,4 mais l'EWMA a donné une volatilité quotidienne de seulement 1,4 (voir la feuille de calcul pour plus de détails). Apparemment, la volatilité de Googles s'est installée plus récemment donc, une simple variance pourrait être artificiellement élevée. La variation d'aujourd'hui est une fonction de la variation des jours Pior Vous remarquerez que nous devions calculer une longue série de poids exponentiellement en déclin. Nous ne ferons pas les calculs ici, mais l'une des meilleures caractéristiques de l'EWMA est que la série entière se réduit commodément à une formule récursive: Recursive signifie que les références de variance d'aujourd'hui (c'est-à-dire une fonction de la variance des jours précédents). La variance d'aujourd'hui (sous EWMA) équivaut à la variance d'hier (pondérée par lambda) plus le rendement au carré d'hier (pesé par un lambda négatif). Remarquez comment nous ajoutons simplement deux termes ensemble: la variance pondérée d'hier et la pondération pondérée hier, au carré. Même si, lambda est notre paramètre de lissage. Un lambda plus élevé (par exemple, comme RiskMetrics 94) indique une diminution plus lente dans la série - en termes relatifs, nous allons avoir plus de points de données dans la série et ils vont tomber plus lentement. En revanche, si l'on réduit le lambda, on indique une décroissance plus élevée: les poids diminuent plus rapidement et, en résultat direct de la décroissance rapide, on utilise moins de points de données. (Dans la feuille de calcul, lambda est une entrée, donc vous pouvez expérimenter avec sa sensibilité). Résumé La volatilité est l'écart-type instantané d'un stock et la métrique de risque la plus courante. C'est aussi la racine carrée de la variance. Nous pouvons mesurer la variance historiquement ou implicitement (volatilité implicite). Lors de la mesure historique, la méthode la plus simple est la variance simple. Mais la faiblesse avec la variance simple est tous les retours obtenir le même poids. Nous sommes donc confrontés à un compromis classique: nous voulons toujours plus de données, mais plus nous avons de données, plus notre calcul est dilué par des données distantes (moins pertinentes). La moyenne mobile pondérée exponentiellement (EWMA) améliore la variance simple en attribuant des pondérations aux rendements périodiques. En faisant cela, nous pouvons utiliser une grande taille d'échantillon mais aussi donner plus de poids à des retours plus récents. Modèles de lissage et de lissage exponentiels Comme première étape pour aller au-delà des modèles moyens, des modèles de marche aléatoire et des modèles de tendance linéaire, des modèles et tendances non saisonniers peuvent être extrapolés à l'aide d'un modèle La moyenne mobile ou le modèle de lissage. L'hypothèse de base derrière les modèles de moyenne et de lissage est que la série temporelle est localement stationnaire avec une moyenne lentement variable. Par conséquent, nous prenons une moyenne mobile (locale) pour estimer la valeur actuelle de la moyenne, puis nous l'utilisons comme prévision pour le proche avenir. Cela peut être considéré comme un compromis entre le modèle moyen et le modèle randonnée aléatoire sans dérive. La même stratégie peut être utilisée pour estimer et extrapoler une tendance locale. Une moyenne mobile est souvent appelée une version quotsmoothedquot de la série originale parce que la moyenne à court terme a pour effet de lisser les bosses dans la série d'origine. En ajustant le degré de lissage (la largeur de la moyenne mobile), on peut espérer trouver un équilibre optimal entre la performance des modèles de marche moyenne et aléatoire. Le modèle le plus simple de la moyenne est le. Moyenne mobile simple (également pondérée): La prévision de la valeur de Y à l'instant t1 qui est faite à l'instant t est égale à la moyenne simple des observations m les plus récentes: (Ici et ailleurs, je vais utiliser le symbole 8220Y-hat8221 pour me tenir Pour une prévision de la série temporelle Y faite le plus tôt possible par un modèle donné). Cette moyenne est centrée à la période t (m1) 2, ce qui implique que l'estimation de la moyenne locale aura tendance à se situer en deçà du vrai Valeur de la moyenne locale d'environ (m1) 2 périodes. Ainsi, nous disons que l'âge moyen des données dans la moyenne mobile simple est (m1) 2 par rapport à la période pour laquelle la prévision est calculée: c'est le temps pendant lequel les prévisions auront tendance à être en retard par rapport aux points de retournement dans les données . Par exemple, si vous faites la moyenne des 5 dernières valeurs, les prévisions seront environ 3 périodes en retard pour répondre aux points de retournement. Notez que si m1, le modèle de moyenne mobile simple (SMA) est équivalent au modèle de marche aléatoire (sans croissance). Si m est très grand (comparable à la longueur de la période d'estimation), le modèle SMA est équivalent au modèle moyen. Comme pour tout paramètre d'un modèle de prévision, il est courant d'ajuster la valeur de k afin d'obtenir le meilleur rapport entre les données, c'est-à-dire les erreurs de prévision les plus faibles en moyenne. Voici un exemple d'une série qui semble présenter des fluctuations aléatoires autour d'une moyenne lentement variable. Tout d'abord, essayons de l'adapter à un modèle de marche aléatoire, ce qui équivaut à une moyenne mobile simple de 1 terme: Le modèle de marche aléatoire répond très rapidement aux changements dans la série, mais en le faisant, il choisit une grande partie du quotnoise dans le Données (les fluctuations aléatoires) ainsi que le quotsignalquot (la moyenne locale). Si nous essayons plutôt une moyenne mobile simple de 5 termes, nous obtenons un ensemble plus lisse de prévisions: La moyenne mobile simple à 5 termes génère des erreurs beaucoup plus faibles que le modèle de marche aléatoire dans ce cas. L'âge moyen des données de cette prévision est de 3 ((51) 2), de sorte qu'il tend à être en retard par rapport aux points de retournement d'environ trois périodes. (Par exemple, un ralentissement semble avoir eu lieu à la période 21, mais les prévisions ne tournent pas jusqu'à plusieurs périodes plus tard.) Notez que les prévisions à long terme du modèle SMA sont une ligne droite horizontale, tout comme dans la marche aléatoire modèle. Ainsi, le modèle SMA suppose qu'il n'y a pas de tendance dans les données. Cependant, alors que les prévisions du modèle randonnée aléatoire sont tout simplement égales à la dernière valeur observée, les prévisions du modèle SMA sont égales à une moyenne pondérée des valeurs récentes. Les limites de confiance calculées par Statgraphics pour les prévisions à long terme de la moyenne mobile simple ne s'élargissent pas à mesure que l'horizon de prévision augmente. Ce n'est évidemment pas correct Malheureusement, il n'existe pas de théorie statistique sous-jacente qui nous indique comment les intervalles de confiance devraient élargir pour ce modèle. Cependant, il n'est pas trop difficile de calculer des estimations empiriques des limites de confiance pour les prévisions à plus long terme. Par exemple, vous pouvez créer une feuille de calcul dans laquelle le modèle SMA sera utilisé pour prévoir 2 étapes à venir, 3 étapes à venir, etc. dans l'exemple de données historiques. Vous pouvez ensuite calculer les écarts types des erreurs à chaque horizon de prévision, puis construire des intervalles de confiance pour les prévisions à long terme en ajoutant et en soustrayant des multiples de l'écart-type approprié. Si nous essayons une moyenne mobile simple de 9 termes, nous obtenons des prévisions encore plus lisses et plus d'un effet de retard: L'âge moyen est maintenant 5 périodes ((91) 2). Si l'on prend une moyenne mobile à 19 mois, l'âge moyen passe à 10: On remarque que les prévisions sont maintenant en retard par rapport aux points de retournement d'environ 10 périodes. Quelle quantité de lissage est la meilleure pour cette série Voici un tableau qui compare leurs statistiques d'erreur, incluant également une moyenne à 3 termes: Le modèle C, la moyenne mobile à 5 termes, donne la plus faible valeur de RMSE d'une petite marge sur les 3 À moyen terme et à moyen terme, et leurs autres statistiques sont presque identiques. Ainsi, parmi les modèles avec des statistiques d'erreur très similaires, nous pouvons choisir si nous préférerions un peu plus de réactivité ou un peu plus de souplesse dans les prévisions. Le modèle de la moyenne mobile simple décrit ci-dessus a la propriété indésirable de traiter les dernières k observations de manière égale et d'ignorer complètement toutes les observations précédentes. (Retourner au haut de la page.) Intuitivement, les données passées devraient être actualisées de façon plus graduelle - par exemple, l'observation la plus récente devrait prendre un peu plus de poids que la deuxième plus récente, et la deuxième plus récente devrait avoir un peu plus de poids que la 3ème plus récente, et bientôt. Le simple lissage exponentiel (SES) modèle accomplit cela. Soit 945 une constante de quotslacement constante (un nombre entre 0 et 1). Une façon d'écrire le modèle consiste à définir une série L qui représente le niveau actuel (c'est-à-dire la valeur moyenne locale) de la série estimée à partir des données jusqu'à présent. La valeur de L à l'instant t est calculée récursivement à partir de sa propre valeur précédente comme ceci: La valeur lissée actuelle est donc une interpolation entre la valeur lissée précédente et l'observation courante, où 945 contrôle la proximité de la valeur interpolée à la valeur la plus récente observation. La prévision pour la période suivante est simplement la valeur lissée actuelle: De manière équivalente, nous pouvons exprimer directement la prochaine prévision en fonction des prévisions précédentes et des observations précédentes, dans l'une des versions équivalentes suivantes. Dans la première version, la prévision est une interpolation entre la prévision précédente et l'observation précédente: Dans la deuxième version, la prévision suivante est obtenue en ajustant la prévision précédente dans la direction de l'erreur précédente par une fraction 945. est l'erreur faite à Temps t. Dans la troisième version, la prévision est une moyenne mobile exponentiellement pondérée (c'est-à-dire actualisée) avec le facteur d'actualisation 1-945: La version d'interpolation de la formule de prévision est la plus simple à utiliser si vous mettez en œuvre le modèle sur une feuille de calcul: Cellule unique et contient des références de cellule pointant vers la prévision précédente, l'observation précédente et la cellule où la valeur de 945 est stockée. Notez que si 945 1, le modèle SES est équivalent à un modèle de marche aléatoire (sans croissance). Si 945 0, le modèle SES est équivalent au modèle moyen, en supposant que la première valeur lissée est égale à la moyenne. (Retourner au haut de la page.) L'âge moyen des données dans la prévision de lissage exponentielle simple est de 1 945 par rapport à la période pour laquelle la prévision est calculée. (Ce n'est pas censé être évident, mais on peut facilement le montrer en évaluant une série infinie.) Par conséquent, la prévision moyenne mobile simple tend à être en retard par rapport aux points de retournement d'environ 1 945 périodes. Par exemple, lorsque 945 0,5 le lag est 2 périodes lorsque 945 0,2 le retard est de 5 périodes lorsque 945 0,1 le lag est de 10 périodes, et ainsi de suite. Pour un âge moyen donné (c'est-à-dire le décalage), le lissage exponentiel simple (SES) est un peu supérieur à la moyenne mobile simple (SMA), car il place relativement plus de poids sur l'observation la plus récente. Il est un peu plus sensible aux changements survenus dans le passé récent. Par exemple, un modèle SMA avec 9 termes et un modèle SES avec 945 0,2 ont tous deux une moyenne d'âge de 5 pour les données dans leurs prévisions, mais le modèle SES met plus de poids sur les 3 dernières valeurs que le modèle SMA et à la Un autre avantage important du modèle SES par rapport au modèle SMA est que le modèle SES utilise un paramètre de lissage qui est variable en continu, de sorte qu'il peut facilement être optimisé En utilisant un algorithme quotsolverquot pour minimiser l'erreur quadratique moyenne. La valeur optimale de 945 dans le modèle SES de cette série s'élève à 0,2961, comme indiqué ici: L'âge moyen des données de cette prévision est de 10,2961 3,4 périodes, ce qui est similaire à celle d'une moyenne mobile simple à 6 termes. Les prévisions à long terme du modèle SES sont une droite horizontale. Comme dans le modèle SMA et le modèle randonnée aléatoire sans croissance. Cependant, notez que les intervalles de confiance calculés par Statgraphics divergent maintenant d'une manière raisonnable et qu'ils sont sensiblement plus étroits que les intervalles de confiance pour le modèle de marche aléatoire. Le modèle SES suppose que la série est quelque peu plus prévisible que le modèle de marche aléatoire. Un modèle SES est en fait un cas particulier d'un modèle ARIMA. La théorie statistique des modèles ARIMA fournit une base solide pour le calcul des intervalles de confiance pour le modèle SES. En particulier, un modèle SES est un modèle ARIMA avec une différence non saisonnière, un terme MA (1) et aucun terme constant. Autrement connu sous le nom de modèle de MARIMA (0,1,1) sans constantquot. Le coefficient MA (1) du modèle ARIMA correspond à la quantité 1 945 dans le modèle SES. Par exemple, si vous ajustez un modèle ARIMA (0,1,1) sans constante à la série analysée ici, le coefficient MA estimé (1) s'avère être 0.7029, ce qui est presque exactement un moins 0.2961. Il est possible d'ajouter l'hypothèse d'une tendance linéaire constante non nulle à un modèle SES. Pour cela, il suffit de spécifier un modèle ARIMA avec une différence non saisonnière et un terme MA (1) avec une constante, c'est-à-dire un modèle ARIMA (0,1,1) avec constante. Les prévisions à long terme auront alors une tendance égale à la tendance moyenne observée sur l'ensemble de la période d'estimation. Vous ne pouvez pas le faire en conjonction avec l'ajustement saisonnier, car les options de réglage saisonnier sont désactivées lorsque le type de modèle est réglé sur ARIMA. Cependant, vous pouvez ajouter une tendance exponentielle à long terme constante à un modèle de lissage exponentiel simple (avec ou sans ajustement saisonnier) en utilisant l'option d'ajustement de l'inflation dans la procédure de prévision. Le taux d'inflation appropriée (taux de croissance en pourcentage) par période peut être estimé comme le coefficient de pente dans un modèle de tendance linéaire adapté aux données en conjonction avec une transformation logarithmique naturelle, ou il peut être basé sur d'autres informations indépendantes concernant les perspectives de croissance à long terme . (Retour au haut de la page) Browns Linear (c'est-à-dire double) Lissage exponentiel Les modèles SMA et SES supposent qu'il n'y a aucune tendance des données (ce qui est normalement correct ou au moins pas trop mauvais pour 1- Des prévisions d'avance lorsque les données sont relativement bruyantes), et elles peuvent être modifiées pour incorporer une tendance linéaire constante comme indiqué ci-dessus. Qu'en est-il des tendances à court terme Si une série affiche un taux de croissance variable ou un schéma cyclique qui se distingue clairement du bruit, et s'il est nécessaire de prévoir plus d'une période à venir, l'estimation d'une tendance locale pourrait également être un problème. Le modèle de lissage exponentiel simple peut être généralisé pour obtenir un modèle linéaire de lissage exponentiel (LES) qui calcule des estimations locales de niveau et de tendance. Le modèle de tendance le plus simple variant dans le temps est le modèle de lissage exponentiel linéaire de Browns, qui utilise deux séries lissées différentes qui sont centrées à différents moments. La formule de prévision est basée sur une extrapolation d'une droite passant par les deux centres. (Une version plus sophistiquée de ce modèle, Holt8217s, est discutée ci-dessous.) La forme algébrique du modèle de lissage exponentiel linéaire de Brown8217s, comme celle du modèle de lissage exponentiel simple, peut être exprimée sous différentes formes différentes mais équivalentes. La forme quotométrique de ce modèle est habituellement exprimée comme suit: Soit S la série lissée par singulier obtenue en appliquant un lissage exponentiel simple à la série Y. C'est-à-dire que la valeur de S à la période t est donnée par: (Rappelons que, sous simple Le lissage exponentiel, ce serait la prévision de Y à la période t1.) Puis, désignons par Squot la série doublement lissée obtenue en appliquant le lissage exponentiel simple (en utilisant le même 945) à la série S: Enfin, la prévision pour Y tk. Pour tout kgt1, est donnée par: Ceci donne e 1 0 (c'est-à-dire tricher un peu, et laisser la première prévision égaler la première observation réelle), et e 2 Y 2 8211 Y 1. Après quoi les prévisions sont générées en utilisant l'équation ci-dessus. Cela donne les mêmes valeurs ajustées que la formule basée sur S et S si ces derniers ont été démarrés en utilisant S 1 S 1 Y 1. Cette version du modèle est utilisée sur la page suivante qui illustre une combinaison de lissage exponentiel avec ajustement saisonnier. Holt8217s Linear Exponential Smoothing Brown8217s Le modèle LES calcule les estimations locales de niveau et de tendance en lissant les données récentes, mais le fait qu'il le fait avec un seul paramètre de lissage impose une contrainte sur les modèles de données qu'il peut adapter: le niveau et la tendance Ne sont pas autorisés à varier à des taux indépendants. Le modèle LES de Holt8217s aborde cette question en incluant deux constantes de lissage, une pour le niveau et une pour la tendance. A tout moment t, comme dans le modèle Brown8217s, il existe une estimation L t du niveau local et une estimation T t de la tendance locale. Ici, elles sont calculées récursivement à partir de la valeur de Y observée au temps t et des estimations précédentes du niveau et de la tendance par deux équations qui leur appliquent un lissage exponentiel séparément. Si le niveau et la tendance estimés au temps t-1 sont L t82091 et T t-1. Respectivement, alors la prévision pour Y tshy qui aurait été faite au temps t-1 est égale à L t-1 T t-1. Lorsque la valeur réelle est observée, l'estimation actualisée du niveau est calculée récursivement en interpolant entre Y tshy et sa prévision, L t-1 T t-1, en utilisant des poids de 945 et 1 945. La variation du niveau estimé, À savoir L t 8209 L t82091. Peut être interprété comme une mesure bruyante de la tendance à l'instant t. L'estimation actualisée de la tendance est ensuite calculée récursivement en interpolant entre L t 8209 L t82091 et l'estimation précédente de la tendance, T t-1. Utilisant des poids de 946 et 1-946: L'interprétation de la constante de lissage de tendance 946 est analogue à celle de la constante de lissage de niveau 945. Les modèles avec de petites valeurs de 946 supposent que la tendance ne change que très lentement avec le temps tandis que les modèles avec 946 supposent qu'il change plus rapidement. Un modèle avec un grand 946 croit que l'avenir lointain est très incertain, parce que les erreurs dans l'estimation de la tendance deviennent très importantes lors de la prévision de plus d'une période à venir. Les constantes de lissage 945 et 946 peuvent être estimées de la manière habituelle en minimisant l'erreur quadratique moyenne des prévisions à 1 pas. Lorsque cela est fait dans Statgraphics, les estimations s'avèrent être 945 0,3048 et 946 0,008. La très petite valeur de 946 signifie que le modèle suppose très peu de changement dans la tendance d'une période à l'autre, donc, fondamentalement, ce modèle essaie d'estimer une tendance à long terme. Par analogie avec la notion d'âge moyen des données utilisées pour estimer le niveau local de la série, l'âge moyen des données utilisées pour estimer la tendance locale est proportionnel à 1 946, mais pas exactement égal à celui-ci . Dans ce cas, cela s'avère être 10.006 125. Ceci n'est pas un nombre très précis dans la mesure où la précision de l'estimation de 946 est vraiment de 3 décimales, mais elle est du même ordre de grandeur que la taille de l'échantillon de 100, donc Ce modèle est la moyenne sur beaucoup d'histoire dans l'estimation de la tendance. Le graphique ci-dessous montre que le modèle ERP estime une tendance locale légèrement plus grande à la fin de la série que la tendance constante estimée dans le modèle SEStrend. En outre, la valeur estimée de 945 est presque identique à celle obtenue en ajustant le modèle SES avec ou sans tendance, donc c'est presque le même modèle. Maintenant, est-ce que ces ressembler à des prévisions raisonnables pour un modèle qui est censé être l'estimation d'une tendance locale Si vous 8220eyeball8221 cette intrigue, il semble que la tendance locale a tourné vers le bas à la fin de la série Qu'est-ce qui s'est passé Les paramètres de ce modèle Ont été estimées en minimisant l'erreur au carré des prévisions à un pas, et non des prévisions à plus long terme, auquel cas la tendance ne fait pas beaucoup de différence. Si tout ce que vous regardez sont des erreurs en une étape, vous ne voyez pas l'image plus grande des tendances sur (disons) 10 ou 20 périodes. Afin d'obtenir ce modèle plus en phase avec notre extrapolation ophtalmique des données, nous pouvons ajuster manuellement la constante de lissage de tendance de sorte qu'il utilise une ligne de base plus courte pour l'estimation de tendance. Par exemple, si nous choisissons de fixer 946 0,1, alors l'âge moyen des données utilisées pour estimer la tendance locale est de 10 périodes, ce qui signifie que nous faisons la moyenne de la tendance au cours des 20 dernières périodes. Here8217s ce que l'intrigue de prévision ressemble si nous fixons 946 0.1 tout en gardant 945 0.3. Cela semble intuitivement raisonnable pour cette série, bien qu'il soit probablement dangereux d'extrapoler cette tendance plus de 10 périodes dans l'avenir. Qu'en est-il des statistiques d'erreur Voici une comparaison de modèles pour les deux modèles présentés ci-dessus ainsi que trois modèles SES. La valeur optimale de 945 pour le modèle SES est d'environ 0,3, mais des résultats similaires (avec un peu plus ou moins de réactivité, respectivement) sont obtenus avec 0,5 et 0,2. (A) Holts linéaire exp. Lissage avec alpha 0,3048 et bêta 0,008 (B) Holts linéaire exp. Lissage avec alpha 0.3 et bêta 0.1 (C) Lissage exponentiel simple avec alpha 0.5 (D) Lissage exponentiel simple avec alpha 0.3 (E) Lissage exponentiel simple avec alpha 0.2 Leurs stats sont quasiment identiques, donc nous ne pouvons pas vraiment faire le choix sur la base Des erreurs de prévision à 1 pas dans l'échantillon de données. Nous devons nous rabattre sur d'autres considérations. Si nous croyons fermement qu'il est logique de baser l'estimation de la tendance actuelle sur ce qui s'est produit au cours des 20 dernières périodes, nous pouvons faire valoir le modèle ERP avec 945 0,3 et 946 0,1. Si nous voulons être agnostiques quant à savoir s'il existe une tendance locale, alors l'un des modèles SSE pourrait être plus facile à expliquer et donnerait également plus de prévisions moyennes de route pour les 5 ou 10 prochaines périodes. (Retourner au haut de la page.) Quel type d'extrapolation de tendance est le mieux: horizontal ou linéaire Les données empiriques suggèrent que, si les données ont déjà été ajustées (si nécessaire) pour l'inflation, il peut être imprudent d'extrapoler des courbes linéaires à court terme Tendances très loin dans l'avenir. Les tendances évidentes aujourd'hui peuvent ralentir à l'avenir en raison de causes variées telles que l'obsolescence des produits, la concurrence accrue, les ralentissements cycliques ou les retournements dans une industrie. Pour cette raison, le lissage exponentiel simple obtient souvent une meilleure sortie de l'échantillon que ce qui pourrait être attendu autrement, malgré son extrapolation de tendance horizontale quotnaivequot. Les modifications de tendance amorties du modèle de lissage exponentiel linéaire sont aussi souvent utilisées dans la pratique pour introduire une note de conservatisme dans ses projections de tendance. Le modèle ERP à tendance amortie peut être mis en œuvre comme un cas particulier d'un modèle ARIMA, en particulier un modèle ARIMA (1,1,2). Il est possible de calculer des intervalles de confiance autour des prévisions à long terme produites par les modèles de lissage exponentiel, en les considérant comme des cas spéciaux de modèles ARIMA. La largeur des intervalles de confiance dépend de (i) l'erreur RMS du modèle, (ii) le type de lissage (simple ou linéaire) (iii) la valeur (S) de la constante de lissage et (iv) le nombre de périodes à venir que vous prévoyez. En général, les intervalles s'étalent plus rapidement lorsque 945 devient plus grand dans le modèle SES et ils s'étalent beaucoup plus rapidement lorsque linéaire plutôt que de simple lissage est utilisé. Ce sujet est abordé plus en détail dans la section des modèles ARIMA des notes. (Retour au haut de la page.) Filtre exponentiel Cette page décrit le filtrage exponentiel, le filtre le plus simple et le plus populaire. Cela fait partie de la section Filtrage qui fait partie de A Guide to Fault Detection and Diagnostic .. Vue d'ensemble, constante de temps et équivalent analogique Le filtre le plus simple est le filtre exponentiel. Elle n'a qu'un seul paramètre d'accord (autre que l'intervalle d'échantillonnage). Elle nécessite le stockage d'une seule variable - la sortie précédente. Il s'agit d'un filtre IIR (autorégressif) - les effets d'un changement d'entrée décroissent exponentiellement jusqu'à ce que les limites d'affichage ou l'arithmétique informatique le masquent. Dans diverses disciplines, l'utilisation de ce filtre est également appelée lissage 8220exponentiel8221. Dans certaines disciplines telles que l'analyse d'investissement, le filtre exponentiel est appelé 8220 Moyenne mobile pondérée exponentiellement8221 (EWMA), ou juste 8220 Moyenne mobile exponentielle8221 (EMA). Cela empiète sur la terminologie traditionnelle ARMA 8220moving average8221 de l'analyse des séries temporelles, car il n'y a pas d'historique d'entrée utilisé - juste l'entrée courante. Il s'agit de l'équivalent temps discret du lag8221 de premier ordre 8220 couramment utilisé dans la modélisation analogique de systèmes de contrôle en temps continu. Dans les circuits électriques, un filtre RC (filtre avec une résistance et un condensateur) est un décalage de premier ordre. En mettant l'accent sur l'analogie avec les circuits analogiques, le paramètre d'accord unique est la constante de temps 82208221, généralement écrite sous la forme de la lettre minuscule grecque Tau (). En fait, les valeurs aux temps d'échantillonnage discrets correspondent exactement au décalage de temps continu équivalent avec la même constante de temps. La relation entre l'implémentation numérique et la constante de temps est représentée dans les équations ci-dessous. Equations du filtre exponentiel et initialisation Le filtre exponentiel est une combinaison pondérée de l'estimation précédente (sortie) avec les données d'entrée les plus récentes, la somme des poids égaux à 1 pour que la sortie corresponde à l'entrée à l'état stationnaire. Après la notation de filtre déjà introduite: y (k) ay (k-1) (1-a) x (k) où x (k) est l'entrée brute au temps ky (k) est la sortie filtrée au temps ka Est une constante entre 0 et 1, normalement comprise entre 0,8 et 0,99. (A-1) ou a est parfois appelée la constante de lissage 82208221. Pour des systèmes avec un intervalle de temps T fixe entre des échantillons, la constante 8220a8221 est calculée et stockée pour des raisons de commodité seulement lorsque le développeur d'application spécifie une nouvelle valeur de la constante de temps souhaitée. Pour les systèmes avec échantillonnage de données à des intervalles irréguliers, la fonction exponentielle ci-dessus doit être utilisée à chaque pas de temps, où T est le temps écoulé depuis l'échantillon précédent. La sortie du filtre est généralement initialisée pour correspondre à la première entrée. Lorsque la constante de temps approche 0, a passe à zéro, donc il n'y a pas de filtrage 8211 la sortie est égale à la nouvelle entrée. Comme la constante de temps devient très grande, une approches 1, de sorte que la nouvelle entrée est presque ignorée 8211 très lourd de filtrage. L'équation de filtre ci-dessus peut être réarrangée dans l'équivalent prédicteur-correcteur suivant: Cette forme rend plus évident que l'estimation variable (sortie du filtre) est prédite comme étant inchangée par rapport à l'estimation précédente y (k-1) plus un terme de correction basé Sur l'inattendue 8220innovation8221 - la différence entre la nouvelle entrée x (k) et la prédiction y (k-1). Cette forme est également le résultat de la dérivation du filtre exponentiel comme un simple cas particulier d'un filtre de Kalman. Qui est la solution optimale à un problème d'estimation avec un ensemble particulier d'hypothèses. Etape réponse Une façon de visualiser le fonctionnement du filtre exponentiel est de tracer sa réponse dans le temps à une entrée pas à pas. C'est-à-dire, en commençant par l'entrée et la sortie du filtre à 0, la valeur d'entrée est soudainement changée à 1. Les valeurs résultantes sont tracées ci-dessous: Dans le graphique ci-dessus, le temps est divisé par la constante de temps tau du filtre, Les résultats pour toute période de temps, pour toute valeur de la constante de temps du filtre. Après un temps égal à la constante de temps, la sortie du filtre s'élève à 63,21 de sa valeur finale. Après un temps égal à 2 constantes de temps, la valeur s'élève à 86,47 de sa valeur finale. Les sorties après des temps égaux à 3,4 et 5 constantes de temps sont respectivement 95,02, 98,17 et 99,33 de la valeur finale. Etant donné que le filtre est linéaire, cela signifie que ces pourcentages peuvent être utilisés pour n'importe quelle grandeur du changement de pas, pas seulement pour la valeur de 1 utilisée ici. Bien que la réponse d'échelon prenne en théorie un temps infini, d'un point de vue pratique, pensez au filtre exponentiel comme 98 à 99 8220done8221 répondant après un temps égal à 4 à 5 constantes de temps de filtrage. Variations sur le filtre exponentiel Il existe une variation du filtre exponentiel appelé filtre exponentiel non linéaire, qui vise à filtrer fortement le bruit dans une certaine amplitude 8220typical8221, mais qui réagit plus rapidement à des changements plus importants. Copyright 2010 - 2013, Greg Stanley Partager cette page:


No comments:

Post a Comment